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Abstract This article is concerned with the numerical simulation of a reverse roller-coating
process, which involves the computation of Newtonian viscous incompressible flows with free-
surfaces. A numerical scheme is applied of a transient finite element form, a semi-implicit Taylor-
Galerkin/pressurecorrection algorithm. For free-surface prediction, we use kinematic boundary
adjustment with a mesh-stretching algorithm. In the present work, an alloy sheet (foil) passes over
a large roller and then a smaller applicator roller, which provides the in-feed. In combination, the
applicator roller, the foil and the fluid form part of the underside coating mechanism. The aim of
this study is to investigate fundamental aspects of the process, to ultimately address typical coating
instabilities. These may take the form of chatter and starvation. A uniform coating thickness is the
desired objective. A mathematical model is derived to describe the solvent coating applied to the
underside of the sheet, assuming that the lacquer is a Newtonian fluid. In particular, the work has
concentrated on the flow patterns that result and a parameter sensitivity analysis covering the
appropriate operating windows of applied conditions. Effects of independent variation in roll-speed
and foil-speed are investigated, to find that maxima in pressure, lift and drag arise at the nip and
are influenced in a linear fashion.

1. Introduction
In this study the effectiveness of finite element modelling is investigated to
predict the flow associated with the reverse roller-coating of alloy sheets using
a protective film of solvent-based lacquer. A mathematical model is derived
to describe the coating applied to the underside of the foil sheet, assuming that
the lacquer is a Newtonian fluid. In particular, the work has concentrated on the
flow patterns that result and a parameter sensitivity analysis covering
appropriate operating windows of applied conditions. This covers variation in
application roll-speed and foil-speed, and consideration of flow conditions in
the nip region. A finite element simulation of the roller-coating process is
presented, based on a semi-implicit Taylor-Galerkin/Pressure-correction
algorithm (Townsend and Webster, 1987; Hawken et al., 1990; Carew et al., 1993).
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Viscous flow with free-surfaces is common and arises in many important
industrial application areas, particularly in coating and printing situations. In
the literature, flows between pairs of rolls have been extensively studied
(Fourcade et al., 1999; Cohu and Magnin, 1997; Carvalho and Scriven, 1997;
Carvalho and Scriven, 1997; Chen and Scriven, 1988; Benjamin, 1994), where a
substrate is pressed between a set of contra or forward rotating rollers. The
general requirement is to achieve a uniform coating thickness. It is reported in
The literature would indicate that, high-pressure in the nip region generates
instability in the flow, that subsequently affects the coating liquid layer, see
Fourcade et al. (1999); Cohu and Magnin (1997); Carvalho and Scriven (1997);
Carvalho and Scriven (1997); Chen and Scriven (1988). Similar findings are
observed in this study, where pressure has an elevated value in the nip region.
There is a sparsity of work in the open literature on reverse roller-coating
between foil and roller. Hence, we first review work cited on roller-coating
between two rollers. Fourcade et al. (1999) investigated a coating operation of a
reverse roller-coating process between two rollers. The main attention is
focused on the deformation of the elastomer on the coated roll. It is reported
that the pressure increases in the converging section of the gap, and reaches its
peak slightly to the left of the contact point of the rollers. The largest
deformation of the elastomer cover of 70 mm is observed to occur at the location
where the pressure reaches a maximum. The lower the gap size, the higher the
pressure peak that is observed.

Cohu and Magnin (1997) conducted experimental investigations into
forward roller-coating of Newtonian fluids between deformable rolls. These
authors observed that the decrease of the thickness of a rubber cover on a
roller, below a critical value, tends to decrease the coating thickness
significantly. Carvalho and Scriven (1997) have argued in their numerical work,
based on forward roller-coating, that the upstream free-surface touches the top
roll, and air is trapped between the roll surface and the coating liquid.
Consequently the coated film that is delivered is defective. Various flow states
are described, both metered and premetered, by moving the rolls apart and
bringing them together. As the rolls are pushed together, the gyre moves
upstream towards the inlet plane. These authors have replaced the fixed inlet
film thickness condition with a weighted kinematic residual that guarantees
the flow is normal to the inlet boundary in an integral sense.

Carvalho and Scriven (1997) investigated the effect of soft-roll deformation
with respect to the onset of ribbing on the coated liquid layer. Their main
findings showed how a deformable cover may be used to lessen the ribbing on
the liquid layer to achieve a required coating thickness. They found that in
forward-roller coating, deformation influenced gap geometry and this
generated ribbing on the liquid layer, on each of the roll surfaces at high
roller speeds. They also analysed time-dependent response to infinitesimal
transverse disturbances. A mathematical model was presented to predict the
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critical capillary number for the onset of ribbing. They concluded that roll
cover deformation alters the wavelength of the ribbing pattern. Roll cover
softness is related to increasing the solids elasticity number. Increasing the
elasticity number of the soft-roll cover makes the ribbing pattern wavelengths
larger and wave numbers smaller; this stimulates the fastest instability modes.
The consequence is a larger ribbing wavelength and consequently an extended
period to achieve a level film.

It is necessary to consider the state of inflow to provide appropriate flow
conditions, stipulating flow rate and profile form. According to Benjamin
(1994), in meniscus coatings, the flow is always pre-metered and therefore
imposing a plug-velocity profile at the inflow boundary is a satisfactory
boundary condition. Hence, we follow this thinking, as do Chen and Scriven
(1988) likewise. This implies that we adopt a constant inflow rate, as delivered
by the premetering. Largely, this flow rate is determined by that at outflow,
based upon a known film-speed and thickness.

For the last two decades the finite element method has played an important
role in simulating the flow of fluids subject to free surfaces. Literature of
relevance on this topic can be found in Keunings (1986); Sizaire and Legat
(1997); Tanner et al. (1975); Silliman and Scriven (1980); Saito and Scriven
(1981); Ramaswamy (1990); Hirt et al. (1974); Sato and Richardson (1994);
Ding et al. (1993); Regalt et al. (1993). One difficulty with computer modelling
of such coating scenarios, lies in the treatment of moving free-surface problems,
accommodating kinematic and dynamic boundary conditions (Keunings, 1986)
on the free-surface and the simultaneous calculation of its position. Sizaire and
Legat (1997) have adopted an approach similar to that of Keunings (1986) for
the treatment of free-surface boundaries, within the viscoelastic regime.

Tanner et al. (1975), constructed a Galerkin finite element scheme for
computing free surfaces with the use of the kinematic condition. Drawbacks
to this approach are commented upon by Silliman and Scriven (1980) who
argue that such a choice is expensive to implement and relies heavily upon
the initial guess. Furthermore, such kinematic conditions alone will not
provide an efficient way to update the free surface in stagnant regions. This
technique is suitable only when surface tension effects dominate viscous effects.

Saito and Scriven (1981) have illustrated a particular strategy to represent
the free-surface position, referencing the meniscus section with the polar arm of
length f ðuÞ and flat sections by height hðxÞ. This introduces a new degree of
freedom on each free-surface node that corresponds to the nodal position. A
variant of this is advocated in the present study, as this is taken to be most
suitable for the present requirements. A corresponding Petrov-Galerkin
formulation is derived for free-surface location and the subsequent adjustment
of the original mesh. This allows for local point wise corrections that
may supplement the solution procedure and invoke remeshing locally, if
required.
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Generally, Eulerian techniques are used to compute the field variables at
fixed nodal points of the mesh. A separate system of equations is generated for
the free surface location. These schemes are suitable even with meshes that see
large distortions. Lagrangian approaches localize the fluid location properties
to a finite number of particles that move with the fluid. This approach fails
when distortions are large. Ramaswamy (1990) has presented an arbitrary
Lagrangian-Eulerian finite element technique, similar to that of Hirt et al.
(1974). In the Lagrangian section, the mesh velocity equates to the fluid
velocity, that removes the convective fluxes from the momentum transport
equation. In this manner, nodal point location may be computed via a velocity-
correction scheme. Subsequently, the mesh velocity is updated using these
nodal point locations. In the Eulerian phase, convective fluxes are evaluated.
Finally, an updated position of the free-surface is computed, using both fluid
and mesh velocities. A conventional Galerkin-Bubnov finite element method is
employed. This mixed Lagrangian-Eulerian method (Ramaswamy, 1990) takes
advantage of these aspects and mitigates any mesh distortion difficulties that
may arise during the Lagrangian phase.

Sato and Richardson (1994) proposed a fringe element generation method
based upon a hybrid finite element/finite volume method. There is no global
remeshing performed with this method. Instead, the fluid flows over a fixed
mesh wetting new portions. New fringe elements are created in the surface
neighbourhood, conforming to the original mesh structure. In contrast to
local remeshing/stretching methods, such an approach avoids mesh
distortion. Each element and node is assigned a dry-wet Boolean flag to
identify whether it is wetted by the fluid or not. Starting from the nodal flag
information, the new location of the free surface at time t n+1 is traced via
kinematics considerations, based on an Euler scheme. A similar strategy is
adopted by Ding et al. (1993) for the computation of moving free-surface
boundaries. Regalt et al. (1993) used a nodal displacement scheme with a
combination of remeshing of the flow domain for a dip coating process. Since
the free surface position is not known apriori and if its initial guess is far
from the actual solution, then it is observed in Regalt et al. (1993) that the use
of kinematic boundary conditions directly lead to convergence difficulties. In
order to force the search procedure to converge with this scheme, the
kinematic boundary conditions were under-relaxed, during the first few
iterations.

The present work introduces new aspects of implementation, based on the
ideas of Saito and Scriven (1981) for the computation of free-surfaces. This
scheme is not restricted to a particular shape. Rather it can be transformed
from one coordinate system to another, locally or globally, according to the
free-surface orientation and domain. The method is tested on the complex flow
section, described below in Figure 1, that contains both flat and curved
meniscus shapes. The flow zone comprises of the inflow on the roller, passing
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to the nip between roller and foil, and the coating flow, from the meniscus to the
outflow on the foil.

2. Governing equations
For an incompressible and isothermal laminar flow, the system of governing
equations may be described by momentum and the continuity equations. In the
absence of body forces, the system may be expressed in the form

r
›u

›t
¼ 7 · T 2 ru ·7u 2 7p ð1Þ

7 · u ¼ 0 ð2Þ

where r is the fluid density, t is the time, u(x,t ) is the fluid velocity and p is
the isotropic pressure. For Newtonian flows, the stress T is defined via a
Newtonian viscosity m, and the rate of deformation tensor D,

T ¼ 2mD ð3Þ
where

D ¼
L þ Lt

2
and Lt ¼ 7u: ð4Þ

With a constant viscosity and using the continuity equation (2), the Navier-
Stokes equation can be recovered,

r
›u

›t
¼ m72u 2 ru ·7u 2 7p ð5Þ

where m72u is the diffusion term.
Adopting characteristic scales on velocity, U, length, L and viscosity, m, we

may define non-dimensional variables u ¼ Uu* and p ¼ ½mU=L�p* . Hence, we
may define an equivalent non-dimensional system of equations to (5) and (2),
discarding the * notation for convenience of representation,

Re
›u

›t
¼ 72u 2 Re u ·7u 2 7p;

7 · u ¼ 0;
ð6Þ

where the non-dimensional group Reynolds number is defined as Re ¼ rUL=m:
For the solution of the given system of governing equations, both initial

and boundary conditions are required. Initial conditions can be formed by
prescribing initial values for the primitive field variables at t ¼ 0;

U ðx; tÞ ¼ u0ðx; 0Þ;

pðx; tÞ ¼ pðx; 0Þ:
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Conditions at the free-surface require a normal constraint,

p þ tnm ¼ 2p0 þ sb; ð7Þ

whilst the absence of friction ensures the tangential constraint,

tnt ¼ 0: ð8Þ

Here, tnn, tnt are normal and tangential stress components, respectively, p0

is atmospheric and p local pressure, s is a surface tension coefficient and b
is the mean curvature of the free-surface (Chen and Scriven, 1988). The
effects of surface tension are neglected in these calculations. On the free-
surface boundary, the normal stress is equated to that of atmospheric
pressure, which is taken as ambient ðp0 ¼ 0Þ and the tangential stress should
vanish, so the surface tension is zero. Remaining boundary conditions are
taken of no-slip on roller and foil, uniform flow at inlet on the roller and
outlet on the foil, with vanishing flux across the nip. This suffices to specify
the problem.

3. Finite element analysis
The general procedure adopted is one of time-stepping to a steady-state
solution. This approach may be used either in a true transient context or one
simply to achieve steady-state. Here, we are interested primarily in steady
conditions, though subsequently, we wish to consider transient instabilities.
A Taylor-Galerkin algorithm is used to solve the governing equations (6).
A twostep Lax-Wendroff approach, based on a Taylor series expansion up to
second order in time, is used to find the solution at steady-state. A two-step
pressurecorrection method is applied to handle the incompressibility
constraint. Employing the Crank-Nicolson treatment on diffusive term, the
resultingsolution method produces three fractional-staged (Hawken et al.,
1990).

In stage one non-solenoidal velocity field u n+1/2 and u* are computed via a
predictor-corrector doublet. A Jacobi method is used to solve the resulting mass
matrix equation. With the use of u*, the second stage computes the pressure
difference, p n+12p n, via a Poisson equation, applying Choleski method. The
third stage completes the loop, calculating the end-of-time-step solenodal velocity
field u n+1 by Jacobi iterative solver. The details upon this implementation may
be found in Townsend and Webster (1987) and Hawken et al. (1990).

Following the notation of Cuvelier et al. (1986), the velocity and pressure fields
are approximated by U ðx; tÞ ¼ U jðtÞfjðxÞ and Pðx; tÞ ¼ P kðtÞwkðxÞ; where U
and P represents the vector of nodal values of velocity and pressure respectively
and fj is a piecewise quadratic and wk is a linear basis function.

On a specified field domain, the fully discrete semi-implicit Taylor-
Galerkin/pressure-correction system of equations in matrix form is given as
follows:
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Stage 1a:
2Re

Dt
M þ

1

2
S

� �
U nþ1

2 2 U n
� �

¼ { 2 ½S þ Re N ðU Þ�U þ LTP}n

Stage 1b:
Re

Dt
M þ

1

2
S

� �
ðU* 2 U nÞ ¼ ð2½SU þ LTP�n 2 ½Re N ðU ÞU�nþ

1
2

Stage 2: KðP nþ1 2 P nÞ ¼ 2
2

Dt
Re LU*

Stage 3:
Re

Dt
M ðU nþ1 2 U* Þ ¼

1

2
LTðP nþ1 2 P nÞ;

ð9Þ

where M, S, N(U ), L, and K are consistent mass matrix, momentum diffusion
matrix, convection matrix, pressure gradient matrix and pressure stiffness
matrix respectively. In matrix form, these can be expressed as follows:

Mij ¼

Z
V

fifj dV;

N ðU Þij ¼

Z
V

fi fiU 1
›fj

›x
þ f1U 1

›fj

›y

� �
dV;

ððLkÞijÞ ¼

Z
V

›fj

›xk

dV;

Kij ¼

Z
V

7ci7cj dV;

Sij ¼

Z
V

7fi7fj dV:

4. Free-surface location
Some of the difficulties, which arise in the mathematical modelling, are
associated with the presence of a free-surface, whose position is unknown
apriori and must therefore be computed as part of the scheme. In the first
instance, the geometry of the free-surface is based on a set (estimated) initial
position, see Figure 1. The coat-outlet flow on the foil is taken as uniform
thickness (width of aoutlet, qualifies positions A and B). The same is true on the
roller for inflow (gives D and E). The meniscus is specified on the basis of
extremities B and D, and interconnecting arc through C. Guidance on the angle
of location of meniscus from the nip, can normally be obtained by experiment.
Here, the intersection of the angle bisector between foil and roller, with the
polar arm to the origin is taken at an angle of 948, establishing point C. Arcs BC
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and CD are then taken as circular arc segments, so that BC tangents the coating
level and, likewise, CD tangents the roller inflow level (radius of arcs is then
equally distant from B, C and D; this locates B and D precisely). A meniscus
shape is sketched for illustration in Figure 1. The eventual position of the free-
surface h(x,t ), is determined via solution of the following two equations:

On flat free-surface boundaries (lines at constant y):

›h

›t
¼ 2Ux

›h

›x
þ Uy; ð10Þ

On the curved meniscus boundary section (lines at fixed azimuthal angle u
setting):

›h

›t
¼ 2Uq

1

r

›h

›q
þ Ur; ð11Þ

where the translation between Cartesian and polar coordinates is assumed.
Initial conditions for the transient algorithm are taken as quiescent upon the

field, but with plug flow imposed at inflow and outflow. It is also found helpful,
to enhance efficiency in convergence to a steady scenario, to first fix the free
boundary as a solid surface (location as above) and compute an internal flow
field from which to commence the free-surface solution. This provides a
contrast to free-surface movement from a predefined position. With free-surface

Figure 1.
Schematic flow diagram
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movement, the new position of each node on the free-surface is computed using
the above equations (10) or (11), according to the particular boundary section.
Remeshing must be performed after each time-step to avoid excessive
distortion of elements in the boundary zones.

In a general discrete variational form, equation (10) and (11) can be expressed
in a fourth algorithmic stage to the time-step cycle:

Stage 4

1

Dt

Z
G

ðci þ ða1 þ u ·7ciÞÞðck þ ða2 þ u ·7ckÞÞDHnþ1
k dGF

2

Z
G

ðci þ ða1 þ u ·7ciÞÞu ·7ckH
n
k dGF

ð12Þ

adopting notation for time-step, Dt, interpolant, H n(x ), interpolating functions,
ck(x ), and nodal solution increment, DHn

k ;

H nðxÞ ¼ Hn
kckðxÞ and DHnþ1

k ¼ ðHnþ1
k 2 Hn

k Þ: ð13Þ

We utilise generalized scalar factors ai to switch between Galerkin and SUPG
(explicit and implicit) schemes, as and when required. A free-surface boundary
segment is indicated by GF, over which quadrature may be established. In
equation (12), the generalized form of convective term is represented,
subsuming either equation (10) or (11), depending upon the particular boundary
segment under consideration. We have found it most effective to use a1 ¼ ah

(an SUPG parameter (Carew et al., 1993)) and a2 ¼ Dt=2 to recover an implicit
SUPG scheme. Then, both ci (and ck) are taken as linear functions on straight-
sided boundary elements sections. In the present work, the free-surface location
is computed by an SUPG approach. This is due to the dominant hyperbolic
type of the corresponding equations (10–11), for which some form of
upwinding is appropriate. This approach has accelerated solution convergence
in comparison to a conventional Galerkin approach. In addition, we have the
freedom of choice of free-surface time step size. Here, we have employed the
same Dt for field and free-surface computations, as we are interested only in
steady-state solutions. Elsewhere, when transient accuracy is important, we
may take advantage of socalled pseuodo-time-steps (Ding et al., 1993;
Nithiarasu and Zienkiewicz, 2000).

5. Problem specification
In the first instance, we confine attention to the model problem as illustrated
in Figure 1. The problem is parameterised through coating thickness
(characteristic length), foil speed, Ufoil, (characteristic speed, typically O(102)),
and rotation speed of the roller, Uroll, 90 per cent of the foil speed. A roller of
radius r1, rotates at angular rate v (speed U roll ¼ vr1), applying a coating to
the underside of the alloy sheet of thickness hðx; tÞ. The sheet rests on both the
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roller and the thin film of fluid between the roller and the sheet. The sheet
moves with speed Ufoil in the horizontal direction (negative x ) and the problem
is posed in a Cartesian frame of reference. As a first approximation, there is no
leakage assumed in the nip region and steady-state flow configurations are
sought.

The system of governing equations, in conjunction with free boundary
equations, in the absence of surface tension, is solved by employing a
timemarching finite element semi-implicit Taylor-Galerkin/Pressure-correction
algorithm (Townsend and Webster, 1987; Hawken et al., 1990; Carew et al.,
1993), applying appropriate initial and boundary conditions. The mesh used is
displayed in Figure 2 and has 2925 nodes, 1302 elements and 6662 degrees of
freedom. Three distinct mesh views are displayed. Figure 2a is a full mesh
view that clearly indicates the wide aspect ratios involved. Figure 2b and 2c
provide zoomed sections of mesh at the meniscus region and towards the nip,
accordingly.

Variation in roll speed covers settings of 90 per cent, 99 per cent, 108 per cent
and 120 per cent of the standard foil speed, Ūfoil, typically O(102)m/min.
Similarly, variation in foil-speed is taken from 0.5*Ūfoil to 2.5*Ūfoil at
increments of 0.5*Ūfoil.

No-slip boundary conditions for the flow on solid surfaces are taken as:

on the foil: Ux ¼ 2 �Ufoil;Uy ¼ 0;

on the roller: Ux ¼ U roll cos u;Uy ¼ U roll sin u;

where U roll ¼ Rv; R is the radius and v the angular rotation rate of the roller.

Figure 2.
Finite element mesh

sections
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On free-surface boundaries, conditions (7) and (8) apply, and there, pressure
remains unspecified. Hence, once foil and roll-speeds have been set, there is a
balance imposed between inflow and outflow, presuming there is no leakage at
the nip. If we assume that the coating thickness is given (experimentally
determined) and that a plug flow is generated both on the foil and roller, then
the roller feed thickness is also set.

5.1 Lift and drag
Lift and drag are mechanical forces that arise between solid and liquid
surfaces. Here we are concerned with the lift on the foil and the drag on the
roller. For a Newtonian fluid the lift, drag and stress may be expressed through
the following expressions:

Lfoil ¼

Z
Gfoil

{ 2 p sin uþ txy cos uþ tyy sin u}du ¼

Z
Gfoil

Lf du ð14Þ

Droller ¼

Z
Groller

{ 2 p cos uþ txx cos uþ txy sin u}du ¼

Z
Groller

ð2DRÞ du ð15Þ

where t ¼ 2mD; Lf and DR are distributional lift and drag quantities.

6. Numerical results
The simulation results begin with the standard setting as discussed in section 5,
that follows four sub-sections of study. The first is associated with the
increment of roll-speed at fixed foil-speed. The second considers the effects
upon the flow behaviour of variation in foil-speed at fixed roll-speed. Next we
switch our attention to inlet flow instability on roller. Presentation of results is
achieved through flow field representation of streamlines in the meniscus free-
surface regions and pressure line contours in the nip region. At various flow
settings, tabulations in pressure, shear-rate, and lift on the foil and drag on the
roller are provided, from which we may infer certain properties of the flow. All
values are reported in a non-dimensional form.

6.1 Flow patterns at standard settings
A standard foil-speed setting of 1 unit and roller speed, 90 per cent of foil-
speed, constitutes the base scenario around which variations are subsequently
sought. A steady-state solution is obtained, starting from rest, by imposing
Dirichlet boundary conditions. Here, free boundary conditions refer to natural
unconstrained forms, where boundary location is also determined. Fixed
implies strong constrained boundary conditions on restrained boundary
locations. When the boundaries are set as fixed, a flow reversal around the
meniscus is apparent, see Figure 3a. Switching from fixed to free boundary
settings, removes any flow reversal around the meniscus, see Figure 3b. So that
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in the free-surface configuration, streamline patterns indicate that flow travels
with the roller to the nip, before reversing and being taken up by the foil, to
pass into the coating film on the sheet. A central long thin vortex is set up in the
flow region between the roller and the foil, see Figure 3. Free boundary
conditions apply to all calculations performed below.

6.2 Analysis with increasing roll-speeds
We study the streamline patterns that emerge in the meniscus region for speeds
of 90 per cent, 99 per cent, 108 per cent and 120 per cent of foil-speed, see
Figure 4, with ten contours per field plot from maximum at the vortex center to
minimum at the meniscus. A slight distortion is observed of the streamline
adjoining the meniscus, indicating a shift with dominance of foil over roll-speed
initially at 90 per cent setting, to a balanced scenario at 99 per cent setting. The
distortion is reversed for 108 per cent and 120 per cent settings. A single vortex
has dominated the flow field at each speed setting, and the maximum
magnitude of these streamlines increases with increasing roll-speed (Isaksson
and Rigdahl, (1994) reported similar results).

Pressure maxima in the nip region are O(106) units, and are gradually
decreasing with linear trend as roll-speed increases, see Figure 5a. Foil
distributional pressure (Pf ) is shown in Figure 5b along the foil length. The
pressure level is fairly low along most of the foil, rises significantly close to the
nip and decreases with increasing roll-speed. However, the magnitude of these
decreasing trends is small due to the small variation in roll-speeds. Therefore,
insignificant changes in pressure line contours are observed for the different
roll-speeds. Pressure line contours are included in Figure 5c for 90 per cent roll-
speed of Ūfoil. The region of maximum pressure broadens away from the nip as

Figure 3.
Streamline patterns:
a) fixed and b) free

boundary conditions,
U roll ¼ 90% Ūfoil
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rollspeed increases. Likewise, maximum shear-rate is charted against
increasing roll-speed setting in Table I, attaining values of O(103) units in
the nip region, see Figure 5a. Maxima in shear-rate shift from the foil at 90 per
cent roll-speed, to a balanced pattern at 99 per cent roll-speed, and finally
towards the roller at 108 per cent speed and above, see Figure 7. Since the
locations of application of shear-rate maxima shift, from foil to roller with
increasing roll-speed, it is no surprise that shearrates increase with roll-speed,
see Table I. Inlet layer thickness ainlet is taken relative to outlet, that is
maintained at a constant level as speed of roller increases. Note, that due to
pre-metering, a constant flow rate is assumed for all settings.

Lift (Lfoil) on the foil and drag (Droller) on the roller are charted
correspondingly against roll-speed setting (see Table I, Figure 6). Lift on the
foil is O(107) units and decreases with increasing roll-speed, in contrast drag on

Figure 4.
Streamline patterns,
increasing roll-speed
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uroll/Ūfoil ainlet ġnip Pnip Lfoil Droller

0.9 1.1 0.424E+00 0.160E+03 0.131E+04 0.131E+01
0.99 1.01 0.417E+00 0.155E+03 0.126E+04 0.136E+01
1.08 0.92 0.438E+00 0.151E+03 0.122E+04 0.142E+01
1.20 0.83 0.494E+00 0.147E+03 0.116E+04 0.149E+01

Table I.
Solution variation

with roll-speed,
values *103 units.

Figure 5.
a. Pressure and shear-

rate line plots
(values*103), increasing

roll-speed b. Foil
distributional pressure

(Pf) values*103, towards
the nip c. Pressure line
contours (values *105),

U roll ¼ 90% Ūfoil
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the roller is O(104) units and increases with increasing roll-speed, but remains
three orders of magnitude lower in size than the lift. Hence, with increasing roll-
speed, decreasing linear trends are observed in pressure and lift, and increasing
trends in drag and shear-rate. It is not surprising that the lift on the foil
decreases with increasing roller speed. As the roll-speed is increased, the foil-
speed becomes smaller in comparison. Thus, the lift on the foil decreases with
increasing roll-speed (or decreasing foil-speed). The variation in each quantity
is noted in Table I, where ainlet is the inlet layer thickness carried by the roller.
We reiterate, outlet-coating thickness is maintained throughout at 1 unit.

Free-surface location and its adjustment with increasing roll-speed may be
discerned from Figure 8 and is calibrated by the departure from the initial fixed
location setting. These adjustments are noted to be only minor perturbations.
The inflow feed decreases in thickness with increasing roll-speed, as the outlet
strip-coating width is held fixed.

6.3 Analysis with increasing/decreasing foil-speeds
With the alternative series of adjustments based upon variation in foilspeeds,
flow patterns in streamlines indicate a rise in vortex location with increase

Figure 6.
Line plots, lift on foil and
drag on roller (values
*103), increasing roll-
speed
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in foil-speed, see Figure 9. Since flow rate is determined by the coat-oulet
flow, increasing foil speed implies enhanced flow rate from one setting to
another, presuming adjustment in pre-metering. The rising inflow rate at
increasing foil-speeds, generates high pressures that push the vortex up
towards the foil, see Figure 9b–e. Correspondingly, there is a drop in vortex
location with decrease in foil-speed to 0.5 Ūfoil, see Figure 9a. Distortion in
the streamline patterns near the meniscus region is clearly apparent with
increasing and decreasing foilspeeds. Meniscus shapes adjust accordingly. At
fixed-strip coating width, the inflow thickness on the roller widens as foil-
speed increases, see Figure 9b–e, and narrows with decreasing foil-speed, see
Figure 9a.

In contrast to the scenario of increasing roll-speeds, here foil-pressures, nip
shear-rates, foil-lift and roller-drag all demonstrate essentially linear increasing
trends with increasing foil-speed, see Figure 10. This means that the levels of
foilpressure, foil-lift and roller-drag double, with doubling of foil-speed. It is
noticeable once more that lift on the foil is three orders of magnitude larger
than that of drag on the roller. The corresponding results are charted in
Table II. Figure 11 shows the foil-pressure distribution travelling towards the

Figure 7.
Shear-rate contours

(values *102), increasing
roll-speed
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nip-region. The level of pressure increases with increasing foil-speed raising
the maximum nip-pressure level. In contrast to roller-speed variation, the
region of maximum pressure is drawn towards the nip as foil-speed
increases and pressure levels rise at the meniscus region, correspondingly.
Limiting trends at both meniscus and nip are displayed in line contours of
Figure 12, to associate the spatial distribution of pressure. The rising
pressure at the nip with foil-speed is clearly evident by inspection in
Figure 13. Here, the increase in foil-speed is more than twice the standard
setting. For foil-speeds lower than roll-speeds, maximum shear-rates shift to
the roller, see Figure 14, and pressure levels decline at the meniscus zone
(Figure 12a).

6.4 Instability analysis: inlet flow on roller
Lastly, we consider flow response to variation in roller inflow. This is to
identify flow sensitivity (coating outlet) to inlet flow perturbations. We note
that the roller-inlet flow may inherit any flow disturbances generated, either
from the pickup-metering roll or metering-applicator roll. To accomplish this a
small sinusoidal wave (Carvalho and Scriven, 1997) is imposed at the free-
surface inlet boundary on the roller and the full flow is solved up to the nip,
meniscus and coating regions. As shown in Figure 3, no flow penetrates the
flow zone internal to the meniscus free-surface region (recirculation region).
Such sinusoidal disturbances die away, due to the presence of the roller-inlet
and meniscus free-surfaces, see Figure 15. The crosssection velocity profiles are
observed to merge into a plug flow form, similar to those in the standard
setting (with absence of imposed inlet disturbances). Hence, plug flow patterns
are resumed prior to the meniscus region. The freesurface setting has
dissipated inlet oscillations, so that these do not influence the meniscus or

Figure 8.
Free-surface profiles,
increasing roll-speed
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foil-coating flow structure. We illustrate these findings in Figure 15, on profiles
and free-surface shapes, covering the zoomed section at the roller inlet alone.
Fluid travels along the roller to the nip, the flow reverses at the nip-region and
returns along the foil. We conclude that these influences do not affect the
coatoutlet flow.

On this evidence and under constant inflow due to pre-metering, it would
appear reasonable to disregard roller inflow spatial instabilities, within the

Figure 9.
Streamline patterns,
increasing foil-speed
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Figure 10.
a. Line plots, pressure
and shear-rates (values
*103), increasing
foilspeed, b. Line plots,
lift and drag (values
*103), increasing foil-
speed

Figure 11.
Foil distributional
pressure (values *103),
towards nip, increasing
foilspeeds

ufoil/Ūfoil ainlet ġnip Pnip Lfoil Droller

0.5 0.55 0.388E+00 0.678E+02 0.427E+03 0.094E+01
1.0 1.1 0.424E+00 0.160E+03 0.131E+04 0.130E+01
1.5 1.6 0.660E+00 0.258E+03 0.219E+04 0.166E+01
2.0 2.2 0.898E+00 0.357E+03 0.307E+04 0.203E+01
2.5 2.7 0.114E+01 0.456E+03 0.395E+04 0.239E+01

Table II.
Solution variation
with foil-speed,
values *103 units.
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overall scheme of analysis. Flow adjustment at the nip and temporal
instabilities remain outstanding.

7. Conclusions
A complex roller-coating problem of industrial relevance is analysed. The
effects of increasing foil and roll-speeds on characteristic flow quantities such
as pressure, lift, drag and shear-rate are reported. At increasing roll-speeds,
pressure and lift on the foil display a linear decreasing trend, the levels of
maximum field pressure broaden away from the nip and the location of
maximum shear-rate shifts towards the roller. In contrast with increasing
foil-speeds, a linear increasing trend is observed in foil-pressure and lift.
Also the levels of maximum pressure migrate towards the nip and the
location of maximum shear-rate switches towards the foil. As for drag on the
roller, a linear increasing trend is observed with both increasing roller and foil
speeds.

Figure 12.
Pressure line contours,

meniscus-nip zones,
increasing foil-speed
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Distorted streamline patterns are identified adjoining the meniscus upon
increasing foil-speed. The higher the speed, the greater the streamline
distortion in the direction of dominant flow (roller or foil speed). Vortex centres
shift towards the foil at increasing foil-speed, and towards the roller at
decreasing foil-speed. Any inherited flow disturbances generated, from the
pickupmetering-applicator rollers, are not found to have any influence on the
coatoutlet flow, due to the presence of the roller inlet and meniscus free-
surfaces.

Significantly, no flow reversal is encountered around and in the vicinity of
the free-surface meniscus. The lacquer coatings are essentially Newtonian in
character. It is not surprising therefore that, linear trends are observed with
parameter variation in the different quantities measured. As excess of lift
above sheet weight may be equated unequivocally to vertical shift of foil
position, hence it is conspicuous that flow instability is more likely to be

Figure 13.
Pressure line contours,
nip zone; full range of foil
speeds
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stimulated by increase of foil-speed than that through roll-speed. The excessive
build-up of pressure in the nip region (magnitude of 106 units), influences
vortex flow structure and meniscus shapes. The elevated pressure in the nip,
will force the foil to move vertically and relax the normal forces by creating a
wider gap between roller and foil. This phenomenon, occurring in time,
will create foil vibration and generate flow instabilities, subsequently giving
rise to wavy patterns on the film coating (chatter and starvation, causing flow

Figure 14.
Shear-rate contours

(values *102), increasing
foil-speed

Figure 15.
Interior velocity fields at

roller inlet
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lines). Future studies are intended to focus on these temporal processing
instabilities.
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